### Refine

#### Year of publication

#### Document Type

- Preprint (99)
- Article (34)
- Conference Proceeding (14)
- Contribution to a Periodical (1)
- Review (1)

#### Keywords

- Kollisionen schwerer Ionen (8)
- Kollisionen schwerer Ionen (8)
- heavy ion collisions (7)
- heavy ion collisions (7)
- UrQMD (6)
- Drell-Yan (3)
- Heavy-ion collisions (3)
- MEMOs (3)
- QGP (3)
- QGP (3)

#### Institute

- Current status of quark gluon plasma signals (2001)
- Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.

- Elliptic flow analysis at RHIC with the Lee-Yang Zeroes method in a relativistic transport approach (2006)
- The Lee-Yang zeroes method is applied to study elliptic flow (v_2) in Au+Au collisions at sqrt s =200 A GeV, with the UrQMD model. In this transport approach, the true event plane is known and both the nonflow effects and event-by-event v_2 fluctuations exist. Although the low resolutions prohibit the application of the method for most central and peripheral collisions, the integral and differential elliptic flow from the Lee-Yang zeroes method agrees with the exact v_2 values very well for semi-central collisions.

- Elliptic flow analysis at RHIC : fluctuations vs. non-flow effects (2005)
- The cumulant method is applied to study elliptic flow (v_2) in Au+Au collisions at sqrt s=200 AGeV, with the UrQMD model. In this approach, the true event plane is known and both the non-flow effects and event-by-event spatial (epsilon) and v_2 fluctuations exist. Qualitatively, the hierarchy of v_2 's from two, four and six-particle cumulants is consistent with the STAR data, however, the magnitude of v_2 in the UrQMD model is only 60% of the data. We find that the four and six-particle cumulants are good measures of the real elliptic flow over a wide range of centralities except for the most central and very peripheral events. There the cumulant method is affected by the v_2 fluctuations. In mid-central collisions, the four and six-particle cumulants are shown to give a good estimation of the true differential v_2, especially at large transverse momentum, where the two-particle cumulant method is heavily affected by the non-flow effects.

- DD correlations as a sensitive probe for thermalization in high-energy nuclear collisions (2006)
- We propose to measure correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions, shown on the example of azimuthal correlations of D-Dbar pairs. We show that hadronic interactions at the late stage can not disturb these correlations significantly. Thus, a decrease or the complete absence of these initial correlations indicates frequent interactions of heavy-flavor quarks in the partonic stage. Therefore, early thermalization of light quarks is likely to be reached. PACS numbers: 25.75.-q

- Bremsstrahlung from a microscopic model of relativistic heavy ion collisions (2000)
- We compute bremsstrahlung arising from the acceleration of individual charged baryons and mesons during the time evolution of high-energy Au+Au collisions at the Relativistic Heavy Ion Collider using a microscopic transport model. We elucidate the connection between bremsstrahlung and charge stop- ping by colliding artificial pure proton on pure neutron nuclei. From the inten- sity of low energy bremsstrahlung, the time scale and the degree of stopping could be accurately extracted without measuring any hadronic observables. PACS: 25.75.-q, 13.85.Qk

- Unparticle contribution to the hydrogen atom ground state energy (2016)
- In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh–Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale U as a function of the scaling dimension and the coupling constant λ are derived. We show that there exists a parameter region where bounds on U ar are stringent, signaling that unparticles could be tested in atomic physics experiments.

- Shear transport far from equilibrium via holography (2020)
- In heavy-ion collisions, the quark-gluon plasma is produced far from equilibrium. This regime is currently inaccessible by direct quantum chromodynamics (QCD) computations. In a holographic context, we propose a general method to characterize transport properties based on well-defined two-point functions. We calculate shear transport and entropy far from equilibrium, defining a time-dependent ratio of shear viscosity to entropy density, . Large deviations from its near-equilibrium value , up to a factor of 2.5, are found for realistic situations at the Large Hadron Collider. We predict the far-from-equilibrium time-dependence of to substantially affect the evolution of the QCD plasma and to impact the extraction of QCD properties from flow coefficients in heavy-ion collision data.

- Constraints on the string t-duality propagator from the hydrogen atom (2019)
- We investigated the implications of string theory in the high-precision regime of quantum mechanics. In particular, we examined a quantum field theoretical propagator which was derived from string theory when compactified at the T-duality self-dual radius and which is closely related to the path integral duality. Our focus was on the hydrogen ground state energy and the 1S1/2−2S1/2 transition frequency, as they are the most precisely explored properties of the hydrogen atom. The T-duality propagator alters the photon field dynamics leading to a modified Coulomb potential. Thus, our study is complementary to investigations where the electron evolution is modified, as in studies of a minimal length in the context of the generalized uncertainty principle. The first manifestation of the T-duality propagator arises at fourth order in the fine-structure constant, including a logarithmic term. For the first time, constraints on the underlying parameter, the zero-point length, are presented. They reach down to 3.9×10−19m and are in full agreement with previous studies on black holes.

- Signatures of dense hadronic matter in ultrarelativistic heavy ion reactions (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Dilepton spectra are calculated with and without shifting the rho pole. Except for S+Au collisions our calculations reproduce the CERES data.

- Microscopic calculations of stopping and flow from 160AMeV to 160AGeV (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.